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ABSTRACT

The unsteady, three-dimensional, full Navier-Stokes (NS)

equations and the Euler equations of rigid-body dynamics are

sequentially solved to simulate the natural rolling response of

slender delta wings of zero thickness at moderate to high an-

gles of attack, to transonic and subsonic flows. The gov-

erning equations of fluid flow and dynamics of the present

multi-disciplinary problem are solved using the time-accurate

solution of the NS equations with the implicit, upwind. Roe

flux-difference splitting, finite-volume scheme and a four-stage

Runge-Kutta scheme, respectively. The main focus is to an-

alyze the effect of Mach number and angle of attack on the

leading edge vortices and their breakdown, the resultant rolling

motion, and overall aerodynamic response of the wing. Three

cases demonstrate the natural response of a 65 ° swept, cropped

delta wing in a transonic flow with breakdown of the leading

edge vortices and an 80 ° swept delta wing in a subsonic flow

undergoing either damped or self-excited limit-cycle rolling os-

cillations as a function of angle of attack. Comparisons with

an experimental investigation completes this study, validating

the analyms and illustrating the complex details afforded by

computational investigations.

INTRODUCTION

The concept of aircraft "supermanuerverability" introduced

in the early 1980's has inspired a great deal of research on

high angle of attack maneuvering through control of unsteady

vortical flowfields. The ability to accurately predict the time-

dependent flowfield and dynamic response of an aircraft is es-

sential to insure the integrity and safety of the vehicle. Ad-

ditionally, better understanding of the unsteady and separated

flows associated with oscillating delta wings must be developed

to exploit these flight regimes and extend current performance

envelopes in the transonic regime.

For both forced pitching and rolling delta wings, Nelson

and his co-authors have performed numerous experimental in-

vestigations. Peltetier and Nelson _ studied static and dynamic

pitching and rolling of a 65" swept delta wing. They con-

cluded: for dynamic constant amplitude motions, both in pitch

and roll. breakdown is affected by the reduced frequency; in-

creases in the width of the hysteresis loop and the time lag

corresponds to increasing the reduced frequency of oscillation;

and in roll. the leeward side of the wing has breakdown down-

stream of the windward side. They also stated that it appears

that rolling a wing influences breakdown because it modifies

the effective angle of attack and the effective sweep angle L.
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Additional forced rolling oscillation investigations were

performed by Ericsson and Hanff _. They analyzed experi-

mental results of a rolling 65 o swept delta wing at 30 ° angle

of attack to try to determine the fluid mechanism causing the

"unusual, highly nonlinear vehicle dynamics." They concluded:

static and dynamic roll characteristics are largely determined

by the effect of vortex breakdown; the dynamic effect of vor-

tex breakdown is to a large extent controlled by the roll-rate-

induced conical camber; and. the roll response to both roll an-

gles and roll rate are subject to significant convective time-lag
effects. Meanwhile. Hanff and Huang 3 attempted to develop a

method to predict the unsteady loads acting on the delta wing

undergoing an arbitrary motion. The aim of these forced mo-

tton investigations was to suggest aerodynamic characteristics

which may account for the limit cycle oscillation known as

wing rock.

In 1981. the phenomena of slender wing rock was first

observed in experiments performed by Nguyen, et aP. Us-

ing an 80 ° swept delta wing investigation showed that wing

rock occurred simultaneously with the appearance of asym-

metric leading-edge vortices. By 1984. Ericsson 5 had shown

that vortex asymmetry could generate wing rock but growth

of the amplitude was limited by vortex breakdown. Under the

advisement of Nelson. Arena 6 conducted a thorough experi-

mental investigation of the natural response of a slender wing

rock in subsonic flow. He identified the envelope of damped

and self sustaining motion for an 80 ° swept wing. Further-

more, he hypothesized that vortex breakdown limits the steady

state amplitude of the wing rock. Above an angle of attack

which promotes vortex breakdown, the limit cycle amplitude

becomes chaotic with non-periodic fluctuations. Continuing

investigation of wing rock, Ng, et al., 7 used a water tunnel

to compare forced rolling and free-to-roll oscillations of delta

wings of various sweep angles with static conditions. Their

results showed that the wing rock can occur in the absence of

asymmetric vortex lift-off, vortex breakdown, and static hys-

teresis. From this, they concluded that these flow phenomena

are not necessary for wing rock to occur. However. their pres-

ence in the flowfield can have strong influence on the amplitude

and frequency of the limit cycle. This observation was further

substantiated by Ericsson. "Analysis of experimental results

for slender delta wings reveals that asymmetric lift-off of the

leading-edge vortices on slender delta wings does not start the

wing rock, although it is responsible for the large limit cycle

amPlitude observed in experiments. ''x.

Computational investigations of delta wings oscillating in

roll were initiated by Kandil, et al, 9 in 1978 using a nonlin-

ear discrete-vortex method. In 1988, Kandil and Chuang m

solved for a locally conical supersonic flow over a sharped-

edged delta wing at zero angle of attack using unsteady Eu-

let equations. The Euler equations were formulated using a

moving frame of reference which were solved by using an ex-

plicit, multi-staged, time-accurate, finite-volume scheme. The
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results showed detailed formation, interaction, and disappear-

ance of the primary vortex and shock. A complete review of

this work is found in Chuang's dissertation _. In later papers, to

improve their model, Kandil and Chuang 12"t3. 14 proceeded to

solve for supersonic flow over rolling delta ,, :_gs, using thin-

layer Navier-Stokes Equations writter, in ,,c moving frame of

reference. Assuming locally conical flow, both a sharp-edged

and rounded-edged wings, held at a mean angle of attack of

l0 °, were oscillated :t: 15 ° at a Reynolds number of 0.5 x

l06 and Mach number of 2.0. The time history of lift and

rolling moment coefficients were presented along with com-

puted flow characteristics which described the behavior of the

primary vortex and shock waves.

Subsonic flow over a rolling delta wing was computed

in 1992, by Chaderijian) 5' in using the full three-dimensional

Reynolds-averaged, Navier-Stokes equations. Using a 65 °

swept delta wing undergoing static roll and large-amplitude

high-rate-of-roll oscillations, Chaderjian studied the effects of

grid refinement and roll angle on the breakdown free vortex

aerodynamics. He concluded that the static rolling-moment

characteristics indicated that the wing is statically stable. The

dynamic rolling-moment coefficient indicated that the fluid ex-

tracts energy from the wing motion indicating that the wing was

positively damped. He also noted that there were significant

rate-induced time-history lags in the rolling-moment coefficient

but negligible lags in the normal-force coefficient and center-

of-pressure position. Lastly, comparison with experimental re-

sults showed that a medium density grid provided sufficient

resolution of the pertinent flow physics. In 1993, Gordnier and

Visball z7 studied the flowfield around an 80 ° swept delta wing

undergoing a constant roll-rate maneuver from 0° to 45 °. Using

the unsteady, full. three-dimensional Navier-Stokes equations,

they described the dynamical behavior of the vortices. "The

right vortex (downward leading edge) moves inborad and to-

wards the surface while the left vortex (upward leading edge)

moves outboard and away from the surface. A lag in the body-

normal position of the left vortex similar to the lag observed for

delta wing rock was noted. The left vortex continually loses

strength during the roll maneuver. The fight vortex initially

gains strength but then rapidly losses strength as high roll an-

gles are achieved ''.7. They concluded that this vortex behavior

was based on the effective angle of attack and sideslip angles

during the rolling motion.

In the transonic regime, the only known published study

of forced rolling oscillation of a delta wing was performed

by Menzies. Kandit and Kandil m in 1995. In this study the

unsteady, three-dimensional, full Navier-Stokes equations are

solved for flow over a 65 ° sharp-edged cropped delta wing

undergoing forced sinus6idal rolling oscillations of # 4°. At an

angle of attack of 20 ° and Mach number of 0.85, the wing was

oscillated at various rolling reduced frequencies and Reynolds
number to observe the effect on the vortex breakdown. It

was shown that as the wing rolls at a reduced frequency of

2,"r, an oscillatory expansion and compression of the vortex

cores and breakdown occurs. Review of the instantaneous

streamlines, which mark the beginning of the vortex breakdown

by their disordered appearance, indicated that as the wing
rolls, the breakdown washes downstream. It was surmised

that when the wing rolls downward, there is a relieving effect

on the transverse shock which weakens the shock, enabling the

vortex core to penetrate without breakdown. After six and a

half cycles of motion, a periodic solution is reached without

breakdown. A significant rise in the lift coefficient is noted

as a result.

lh this paper, three cases demonstrate the natural rolling

response of a delta wing in transonic and subsonic flow. Tran-

sonic flow over a 650 swept, cropped delta wing with break-

down of the leading edge vortices demonstrates self sustained

rolling oscillations until breakdown dominates the flow field.

Two cases of subsonic flow over an 80 ° swept wing demon-

strate either damped and self-sustained rolling oscillations as

a function of angle of attack. A complete investigation of the

aerodynamic response of the wing, the effects of mach number,

angle of attack, and vortex breakdown are presented.

FORMULATION

Governing Equations:

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations in terms of the

time-dependent, body-conformed coordinates (1 _2 and _3,

is given by:

a_ aE-= a(_,,), =o: ,,, = 1,2.3• 4- = 1.2,3; s

where

¢m = (m(=l,Z2,xa, t) (2)

O = 7 = 7 [p'put, pu2,pus,pe]' (3)

The definitions of the inviscid and viscous fluxes; E,, and

(E")s are given in Ref. 19.

To achieve the natural response of the wing to the fluid

flow, the wing motion is obtained by coupling the fluid dy-

namics with rigid body dynamics. The resultant external aero-

dynamic rolling moment. C,_,,,, is equated to the time rate

of change of the angular momentum vector about the axis of
rotation as follows:

C_._, = l=_=+(l== -I,_)_, (4)

where I, are the principal mass moments of inertia for the

wing, w_ is the rolling velocity, and wv and w= = 0 for single

degree of freedom motion (rolling motion).

Boundary and Initial Conditions and Grid Motion:

All boundary conditions are explicitly implemented. They

include inflow-outflow conditions, solid-boundary conditions

and plane of geometric symmetry conditions. At the plane

of geometric symmetry, periodic conditions are enforced. At

the inflow boundaries, the Riemann-invarient boundary-type
conditions are enforced. At the outflow boundaries, first-order

extrapolation from the interior point is used.

Since the wing is undergoing rolling motion, the grid is

moved with the same angular motion as that of the body.

The grid speed, ..-_-, and the metric coefficient, a--;7' are
computed at each time step of the computational scheme.

Consequently, the kinematic boundary conditions at the inflow-

outflow boundaries and at the wing surface are expressed
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in terVms of the relative velocities. The dynamic boundary

condition, _, on the wing surface is no longer equal to zero.
"This condition is modified for the oscillating wing as:

Op ,0",9 = - P ._ . "h (5)On

where _' is the acceleration of a point on the wing flat surface;

fi, the unit normal to the wing surface which is equal to the

unit vector g= for a flat surface. The acceleration is given by:

_" = f_ x_ +_x(_xY) - (6)

where _ is the angular velocity. Notice that for a rigid

body, the position vector "V, is not a function of time and

hence, -_ = '_ = 0. Finally, the boundary condition for the

temperature is obtained from the adiabatic boundary condition

and is given by:

OT ,,,,,_=o--_- 0 (7)

The initial conditions for the transonic flow case corre-

spond to the flow solution around a stationary 65 ° swept, delta

wing at an angle of attack of 20" that was impulsively inserted

into a free stream with Moo = 0.85, and Reynolds number of

3.23 x 106. The solution after 1'8,000 time steps with a time

step of At = 0.0002 is then used for the starting point for the
transonic flow case. The initial conditions for the two subsonic

cases correspond to the flow solution around a stationary" wing

at an angle of attack of 20 °. and 30 ° respectively. The 80 °

swept, delta wing was impulsively inserted into a free stream

with M_ = 0.1, and Reynolds number of 0.4 x 106. The so-

lution after 17,500 time steps with a time step of At = 0.001

is then used for the starting point for the subsonic flow cases.

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compressible,

full Navier-Stokes equations. This scheme uses the flux-

difference splitting of Roe and a smooth flux limiter is used
to eliminate oscillation at locations of large flow gradients.

The viscous and heat flux terms are linearized in time and

the cross derivative terms are eliminated in the implicit oper-

ator and retained in the explicit terms. The viscous terms are

differenced using second-order accurate central differencing.

The resulting difference equation is approximately factored to

solve the equations in three sweeps in the ft, f2 and f3, di-

rections. The computational scheme is coded in the computer

program "FTNS3D".
- 2.

The method of solution consists of three steps. In the

first step, the problem is solved for the stationary wing at

0 ° roll angle. This solution represents the initial conditions

for the second step. In the second step, the dynamic initial

conditions are specified. For the transonic case, the wing is

subjected to an initial velocity. For the subsonic cases, a

quarter cycle of a sinusoidal function is specified to roll the

wing to a 10 ° roll angle with zero angular velocity while the

Navier-Stokes equations are solved accurately in time. Having

specified the dynamic initial conditions, the third step proceeds.

Applying a four-stage Runge-Kutta scheme and the specified

dynamic initial conditions for 0 and 0. Eq. (4) is explicitly

integrated in time in sequence with the fluid dynamic equations.

Equations (4) is used to solve for O, 0, and 0 while the fluid

dynamics equations provide the pressure distribution over the

wing surface. The pressure distribution is integrated over the

surface of the wing to determine C,,, ..... with respect to the axis

of geometric symmetry. At each time .step, the wing and the

grid are rotated corresponding to 0 and 0 resulting in the natural

rolling response of the delta wing to the fluid flow. Due to the

dynamic nature of the problem, the metric coefficients and the

grid speed are computed at each time step. The computations

proceed until periodic response is reached.

COMPUTATIONAL APPLICATION AND DISCUSSION

Case I-Transonic Flow over a 65°-Swept Cropped Delta

Wing undergoing Divergent Rolling Oscillations

A 65 ° swept-back, sharp edged, cropped delta wing of zero
thickness is considered for the transonic flow solutions. The

cropping ratio (tip length/root-chord length) is 0.15. An O-H

grid of 65 x 43 x 105 in the wrap-around, normal, and axial

directions, respectively, is used. The computational domain

extends two chord lengths forward and five chord lengths

downstream of the wing trailing edge. The radius of the

computational domain is four chord lengths. The minimum

grid size in the normal direction to the wing surface is 5 x 10 "4

from the leading edge to the plane of symmetry. The initial

conditions correspond to the solution of the wing held at 20 o

angle of attack and 0 ° roll angle after 18,000 time steps at a
Mach number and Reynolds number of 0.85 and 3.23 x 10 6,

respectively.

Plots of the initial condition depict a solution characterized

by weak oblique shocks beneath the primary vortices and a

strong, transverse terminating shock located at approximately

z = 0.86 (See Fig. 1). These shocks bound a substantial

supersonic pocket. Outboard of the oblique shocks, a subsonic,

separated region depicts a secondary vortex which exists until

z = 0.91. The primary vortex interacts with the terminating

shock and enlarges indicating vortex breakdown. The plots

of the Mach number contours, instantaneous streamlines, and

surfaces of constant entropy shown in Figure 1 depict clearly

a bubble type vortex breakdown and the flow appears to be

completely symmetric. Additional details of this flow solution

along with comparisons with experimental data are shown in

Ref. 19.

From the initial conditions, the wing is given an instan-

taneous roll velocity of 0 = +0.925 x 10 -4. For conven-

tion, a positive roll velocity indicate that the right hand side

of the wing when looking in the upstream direction is mov-

ing upward. With a dimensionless mass moment of inertia of

Irr = 2.88 x 10 -3, the wing is free to respond to the rolling

moment induced by the fluid flow. Figure 2 shows the time

history of the resultant motion and lift coefficient curve. While

the motion appears somewhat periodic after t = 30, there is a

chaotic behavior in the cyclic response due to the vortex break-

down which leads to divergence of the motion after five cycles

of rolling. The highly unsteady nature of the shock induced

vortex breakdown:promotes very irregular motion and aerody-

namic response histories. The lift coefficient indicates an initial
loss after the onset of motion and fluctuates between 0.36 and

0.40 during the quasi-periodic response. After t = 120 when
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the wing motion diverges to approximately 24% the lift drops

considerably.

Figure 3 shows snapshots of the Mach contours near the

wing surface and surfaces of constant entropy depicting the

primary vortex core and breakdown. Duo.,'==, 1he quasi-periodic
response, the terminating shock and vortex breakdown location

oscillate laterally as shown in views a) to d). In contrast

to subsonic flow where the breakdown and restructuring of
the vortex serves to dampen the motion; _ in transonic flow,

the sustained oscillation of the wing appears to be caused by

the asymmetnc motion of the breakdown location. However,

as time progresses, the frequency of oscillation is slightly
increased. In Ref. 18, it was shown that when forced to

roll at a reduced frequency of 2_, the transverse shock was
weakened as a result of the motion and the breakdown washes

downstream. In this case, after t = 120, (shown in view e), the

shock on the upward moving side appears to weaken as a result
of the increased rolling frequency and the breakdown washes

downstream. On the downward moving side, the breakdown

location advances to the apex of the wing which results in a

significant drop in the lift. Without breakdown on the fight

side, the wing rolls until equilibrium is reached at a positive

mean roll angle of 24.2 ° . Small amplitude fluctuations of

this roll angle are observed due to the unsteady nature of the

complete breakdown on the left side of the wing.

Case ll-Subsonic Flow over an 80°-Swept Delta

Wing undergoing Damped Rolling Oscillations

In order to compare with available experimental data, an

80 ° swept-back, sharp-edged delta wing of zero thickness is

considered for the subsonic flow solutions. This wing was

modeled after the experimental model used by Arena 6. An O-

H grid of 65 x 43 x 84 in the wrap-around, normal, and axial

directions, respectively, is used. The computational domain

extends two chord lengths forward and five chord lengths
backward from the wing trailing edge. The radius of the

computational domain is four chord lengths. The minimum

grid size in the normal direction to the wing surface is 5 x

10 -4 from the leading edge to the plane of symmetry. The

initial conditions correspond to the solution of the wing held

at 10 ° angle of attack and 0 ° roll angle after 17,500 time
steps at a Mach number and Reynolds number of 0.1 and 0.4

x 10 _. respectively. The flowfield has no observable vortex
breakdown.

From the initial conditions, the wing is forced tO roll to

an initial roll angle of 0 = 10.0 °. Again, by convention, a

positive roll angle indicates that the fight hand side of the

wing when looking in the upstream direction is rolled upward.
The wing is then released to respond to the fluid flow with a

mass moment of inertiaI about the x - axis of l_ = 2.253 x

10 -2. Figure 4 shows the time history of the resultant motion

and lift coefficient curve. This plot characterizes the damped
rolling oscillations observed of wing at relatively low angles

of attack in a subsonic freestream. At an angle of attack of 10 °

and Moo = 0.]., and 80 ° swept delta wing will not undergo self

sustained wing rock. From the initial displacement of 10 ° roll
angle, the wing rolls to a minimum of- 3.11 ° in overshoot and

returns to a positive roll angle before reaching the steady state
response at 0 = 0 °. Meanwhile. the lift coefficient increases

by 8.4%.

Figure 5 shows a comparison of the Mach number contours

and instantaneous streamlines of the initial conditions wht;n

the wing is released at 0 = 10" and the steady state response

when the wing is at rest at 0 = 0 °. Notice that there is very.
little motion of the vortex cores. As a result, the variation

of the pressure distribution is extremely small. Without large

pressure differences between the left and right sides of the

wing, the angular velocity remains small and the motion of the

wing subsides. There is no noticeable lagging of the motion

of the fluid with respect to the motion of the wing.

Case lll-Subsonic Flow over an 80°-Swept Delta Wing

undergoing Self-sustained Rolling Oscillations

The same 80 ° swept-back, sharp-edged delta wing of zero

thickness is considered for this case. To duplicate the exper-

imental investigation by Arean 6, the initial conditions corre-

spond to the solution of the wing held at 30 ° angle of attack
and 0 ° roll angle after 17,500 time steps at a Mach number

and Reynolds number of 0.I and 0.4 x l0 b. respectively.

From the initial conditions, this wing is also forced to roll
to an initial roll angle of 0 = 10.0 ° as in the previous case.

The wing is then released to respond to the fuid flow with

a mass moment of inertial about the x- axis of the I=_ =

2.253 x 10-2. Figure 6 shows the phase and time history of

the resultant motion. From the initial displacement of 0 =

10 °, the wing oscillated in roll with a growing amplitude until
periodicity is reached three cycles later. By t = 60, the motion

is completely periodic with a maximum limit-cycle amplitude

of 41.2 °. For comparison, the experimental results for the same

wing performed by Arena 6 showed a steady state amplitude of

41 ° at the same Reynolds number. Viewing the time histories

of all three rotational properties, it is clear that the angular

acceleration and roll angle are exactly 180 ° out of phase, while

the angular velocity is nearly 90 ° out of phase.

Figure 7 shows the time history of the lift coefficient

and the phase of the periodic response of the rolling moment
coefficient. Notice that the lift coefficient curve oscillates at

twice the frequency of the wing motion. In the phase plot
of the rolling moment coefficient, it is interesting to note the

three lobes of the periodic response. These lobes represent

the energy shift from the wing to the fluid in the outer two

lobes as indicated by the "+" and from the fluid to the wing in

the middle lobe as indicated by the "-". These outer lobes

are referred to as damping lobes. In the plot of the time

history of the angular acceleration (Fig. 6), irregularities due

to the damping lobes are noted near the peaks of the curve.

Since these lobes are not present in the damped oscillation

case, careful study of the flowfield at these points may provide

insight into the wing rock phenomenon.

Figure 8 shows snapshots of a complete cycle of rolling
depicting the total pressure contours at key points labeled in

Figs. 6 and 7. As the wing is approaching the maximum

angular velocity, points g) to h) and j) to k), the footprint of the

vortex core on the upward moving side appears to bow outward

toward the leading edge of the wing. It appears that the uneven

movement of the vortex core with respect to the leading edge
is a result of the lagging movement of the fluid in response

to the motion of the wing. Near the trailing edge, this effect

is more pronounced due to the increased absolute velocity of

the wing near the outer edges of the surface. When the fluid
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motion catches up to the motion of the wing, the energy flows

from the fluid to the wing promoting the rolling motion, and

stimulating wing rock. As the wing rolls, the angular velocity

increases until the wing exceeds _ = ±27 °. Near the trailing

edge, the absolute velocity of the wing exceeds the limit of

the motion that the fluid can maintain. The flowfield reflects

this lag by the bowed appearance of the vortex core. When

the fluid flow motion lags the wing motion, energy is absorbed

by the fluid providing damping to the system as indicated by

the "+" in rolling moment phase diagram of Fig. 7. As the

wing slows, the cores appear to straighten and snap back. This

effectively rolls the wing in the opposite direction.

In Figure 9, a plot of the core positions at z = 0.77 is

shown to demonstrate the symmetric motion of the vortex

cores. Note that the cubic splines connecting the individual

points do not represent the path taken but are merely shown

for connectivity. During the energy transfer from the wing to

the fluid, from points f) to g) and i) to j), the position of the

vortex cores exhibits a more vertical motion. When the energy

is transferred from the fluid to the wing, the position of the

vortex cores shift in a lateral direction paralleling the surface

of the wing. This motion is coicident with the lagging motion

of the fluid with respect to the wing.

CONCLUSIONS

The unsteady, compressible, full Navier-Stokes equations

are integrated time accurately using the implicit, upwind, flux-

difference splitting, finite-volume scheme and are coupled se-

quentially to the Euler equations of rigid-body dynamics which

are solved with a four-state Runge-Kutta scheme to study the
unsteady transonic and subsonic flow around slender delta

wings. The natural response of the wing undergoing damped,

self-sustained, and divergent rolling oscillations are shown as
a funciion of angle of attack and Mach number. Flowfield de-

tails of the leading-edge vortices and their breakdown unable

to be captured by experiment have been shown.

The first case demonstrates the effects of vortex breakdown

in the transonic regime. With the shock induced vortex break-

down. the derivatives of the motion and the aerodynamic prop-

erties show a very high frequency, low amplitude disturbance

resulting from the shock-vortex interaction. Oscillations in the

location of the shock and vortex breakdown location induces

the wing to roll, however, the wing is unable to remain in a

stable limit cycle. Divergence of the motion is observed when

the rolling frequency is sufficient to cause the transverse shock

to weaken on the upward moving side. The wing responds by

continuing to roll until an equilibrium point is reached.

The second and third case are presented to provide a com-

parison with available e:xperimental data. Case II demonstrates

at a relatively low angle of attack, that an 80 ° swept delta wing

will not undergo self-sustained oscillations. Within one cycle,

the wing resumes the steady state position of 0° roll angle. The

motion of the wing and vortex cores is very slight. With the

relatively small angular velocity of the wing, the fluid motion

does not lag the motion of the wing. The flowfield then damp-

ens the wing response and prevents self-sustained oscillations.

In contrast, the third case the delta wing at an angle

of attack of 30 ° does exhibit the self-sustained limit-cycle

rolling oscillation known as wing rock. Within three cycles of

oscillation, the wing motion sustains a roll amplitude of41.2 °

and a period of oscillation of 23.1 nondimensional time. The

phase diagram of the rolling-moment coefficient shows three

distinct lobes which represent the energy shift from the fluid

to the wing and vice versa. When the wing is first released

to respond to the fluid, the pressure distribution shows a much

stronger asymmetry than in the previous case due to the higher

angle of attack, this results in a faster roll velocity. Instead of

the motion damping as in the first case, the increased velocity

causes the motion to overshoot. It appears that the velocity of

the wing near the trailing edge exceeds the ability of the fluid

to respond. Since the motion of the vortex core is inhibited

near the trailing edge, the core exhibits a distinctive bowed

shape. While the motion of the fluid lags the wing response,

energy is stored in the vortex cores. The wing motion slows

as a result of the damping provided by the energy transfer to

the fluid and reverses roll direction. With the slowing of the

roll rate, the motion of the fluid ceases to lag the motion of

the wing. The vortex cores appear to snap back. In doing so,

the energy stored in the fluid is imparted to the wing causing

the roll velocity to increase. This cyclic motion builds until

the energy transfer of the system is balanced and the periodic

response is maintained.
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Transonic Flow-Initial Conditions
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Figure 1. Mach Contours near the Wing Surface with Surfaces of Constant Entropy (s = 0.5) and Instantaneous

Streamlines; Moo = 0.85, Re = 3.23 × 106, _ = 20.0 °,/9 = 0.0 °.
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Transonic Flow-Divergent Oscillations
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Figure 2. Time History of Roll Angle, 8, Angular Velocity, 0, Angular Acceleration, 8, and Lift Coefficient; Moo = 0.85,

Re = 3.23 × 106, a = 20.0 °, Sic = 0.0% _)ic= 0.5336°/t (points of interest annotated).
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Figure 3. Snapshots of the Mach Contours near the Wing Surface with Surfaces of Constant Entropy (s = 0.5)at Points of

Interestat a) 8= -0.47 °, b)/9= - 12.10 ° , c) 0= 0.44 °, d) /7= 11.08% e) /7= 24.27 ° .
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Subsonic Flow-Damped Oscillations
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Figure 4. Time History of Roll Angle, 8, Angular Velocity, _),Angular Acceleration, _),and Lift Coefficient; Moo = 0.1,
Re = 0.4 x 106, a = 20.0 °, O,c = 10.0 °, O,c = O.O°/t.
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Figure 5. Comparison of Mach number Contours and Instantaneous Streamlines of Initial Conditions (0 = 10.0 °) and
Steady State Response (0 = 0.0°).

Subsonic Flow-Self-Sustained Limit-Cycle Oscillations
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Figure 6. Time History of Roll Angle, 0, Angular Velocity, 0, Angular Acceleration, 0 and Phase of Angular Velocity, 0;
Moo = 0.1, Re = 0.4 x 106, a ----30.0 °, Oic = 10.0 °, 0ic = 0.0°/t (with points of interest annotated).
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Snapshots of a Complete Cycle of Rolling Oscillation depicting the Total Pressure Contours at Points of Interest

at f) 0=41.1 ° ,g) 0=27.3 ° ,h) 0=0.0 °,i) 0= -40.8 °,j) 0= -27.5 ° ,k) O= -0.2 ° , l) 0=41.2 ° .
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Figure 9. Plot of the Vortex Cores Positions at z = 0.77 at points of interest.
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